Components

1. Hoffmann II Micro Multi-Pin Clamp
2. Hoffmann II Micro 90° Multi-Pin Clamp
3. Hoffmann II Micro Rod to Rod Coupling
4. Hoffmann II Micro Pin to Rod Coupling
5. Hoffmann II Micro to Hoffmann II Compact Rod to Rod Coupling
6. 3mm Carbon and Stainless Steel Rods
7. 2mm and 1.65mm Self-Drilling/Self-Tapping Half-Pins
8. 2mm Blunt Half-Pin
9. Hoffmann II Micro Instrumentation
In 1938, Raoul Hoffmann, a Swiss surgeon from Geneva, Switzerland, designed a revolutionary External Fixation System. The basic features of this system were its modular design and the ability to reduce fractures or to make post operative corrections to the alignment of fragments in three planes with the frame in situ. The Original Hoffmann System underwent considerable design improvements over the years. Then in the late 90’s, a group of renowned design surgeons and Stryker engineers developed the innovative Hoffmann II and Hoffmann II Compact Systems. These systems signified a giant step forward in the treatment of bone fractures with modular external fixation frames.

Indeed, thanks to the light weight and non bulky components, the Hoffmann II Systems provide surgeons a virtually unlimited versatility, simplicity, and an unequaled ease of use. The Hoffmann II Micro System capitalizes on the experience acquired during several decades with the original Hoffmann System and with the Hoffmann II Large and Hoffmann II Compact Systems. It is made of stainless steel and carbon composite materials to provide optimal low profile high resistance features, and it has been designed to answer the growing needs of small bone injuries by ensuring ease of use, versatility and patient comfort.

1 Dr. Gernot Asche, Andy Burgess M.D., Prof. Franz Burny, Mr. Charles M. Court-Brown, Prof. Erkki O. Karaharju, Loren Latta Ph.D., Prof. David Seligson M.D., Dr. Gregory Zych M.D.
Indications & Contraindications

Relative Indications

The Hoffmann II Micro System is indicated for hand fractures. It is particularly suited for the following indications:

- Articular fractures
- Comminuted Fractures
- Severe open fractures (Grade 3)
- Rolando fractures
- Non unions and delayed unions
- Fractures associated with infection
- Acute Corrective Osteotomies
- Bennett’s fractures
- Burns and Contractures
- Pathologic fractures
- Small Joint Arthrodesis

Relative Contraindications

- Patients with a compromised immune system.
- Non compliant patients who would not be able to ensure proper pin care.
- Pre-existing internal fixation that prohibits proper pin placement.
- Bone pathology precluding pin fixation
Due to the high versatility of the Hoffmann II Micro System, a virtually unlimited number of frame configurations can be constructed, thus providing surgeons the ease of use to treat a variety of indications.

This Technical Guide provides step by step surgical techniques for three basic frame assemblies. These assemblies can then be adapted to other indications.
General Half Pin Insertion and Frame Building Guidelines

Frame Building Guidelines

The Hoffmann II Micro Multi-Pin Clamp is designed for ease and precision of pin insertion. The Clamp has oval pin slots which allow the Half Pins to be inserted in one plane in a variety of angles.

The Hoffmann II Micro Pin to Rod Coupling offers independent pin placement, which is needed to address the most complex cases.

Multi-Pin Clamps and Couplings should be placed at least 5mm to 10mm away from the skin to allow for post-operative swelling and proper pin site care.

To reduce forces on the bone, it is recommended to hold the Half Pins with standard surgical pliers while tightening the Clamps and Couplings.

The Hoffmann II Micro to the Hoffmann II Compact Rod to Rod Coupling can be used to connect the two systems together, and can be tightened with the 5mm Wrench 3mm/4mm Pin Driver.

Insertion Guidelines

- Use a 1.6mm K-Wire to pre-drill a 2.0mm Half Pin
- Use a 1.2mm K-Wire to pre-drill a 1.65mm Half Pin

Blunt/Self-Tapping Half Pins are offered in 2.0mm thread diameter only. Self-Drilling/Self-Tapping Half Pins are offered in 2.0mm and 1.65mm thread diameters. All Half Pins have a 2.0mm shaft diameter.

Pay attention to soft tissues. A (mini) open insertion technique is recommended to avoid unnecessary damage to the soft tissues. A Drill/Insertion Guide is provided in the system to facilitate this technique.
Operative Technique

Placement in the Phalanges

I Insert Half Pins from the radial side in the frontal plane.

II Insert 0° to 45° from the frontal plane on the dorsal-radial side.

III Insert 40° to 60° from the frontal plane on the dorsal-radial side.

IV Insert 40° to 60° from the frontal plane on the dorsal-ulnar side.

V Insert from the ulnar side in the frontal plane.

Placement in the Metacarpals

I Insert Half Pins from the radial side in the frontal plane.

II Insert 20° to 60° from the frontal plane on the dorsal-radial side.

III Insert 40° to 60° from the frontal plane on the dorsal-ulnar side.

IV Insert 40° to 60° from the frontal plane on the dorsal-ulnar side.

V Insert from the ulnar side in the frontal plane.

Note:
When inserting pins, insure bi-cortical purchase.
Operative Technique

Frame 1

Mid shaft fracture of the proximal phalanx of the index finger (Digit II).

Material used:
2 - Multi-Pin Clamps
2 – Rod to Rod Couplings
1 - Connecting Rod
 (Carbon or Stainless steel),
4 - 2mm Apex Half-Pins
 (Self-Drilling or Blunt),
1 - Drill/Pin Insertion Guide,
1 - 1.6mm K-Wire,
1 - 2mm Pin Driver,
1 - 4mm Nut Wrench

Step 1: Drill the first proximal hole at least 5mm from the fracture site using the Drill/Pin Insertion Guide and the 1.6mm K-wire. If self-drilling/self-tapping Half Pins are used, it is possible to insert the Half Pins without pre-drilling as described in this step.

Note: The drill/ pin insertion angle is 0° to 45° from the frontal plane radially. Use image intensification to determine proper pin placement, and ensure bi-cortical purchase.

Step 2: Manually insert the Half Pin (blunt or self-drilling/self-tapping) using the 2mm Pin Driver and Drill/Pin Insertion Guide.
Step 3: Place one Multi-Pin Clamp over the Half Pin and keep it at the desired distance from the skin.

Step 4: Using the Multi-Pin Clamp as a guide and the Drill/Pin Insertion Guide to protect soft tissue, drill the second proximal hole with the 1.6mm K-wire. Again, if self-drilling/self-tapping Half Pins are used, it is possible to insert the Half Pins without pre-drilling as described in this step.

Step 5: Manually insert the second 2mm Half Pin through the Multi-Pin Clamp using the 2mm Pin Driver and the Drill/Pin Insertion Guide.

Step 6: Tighten the Multi-Pin Clamp to the Half Pins at the desired position using the 4mm Nut Wrench.
Step 7: Build the same Pin/Clamp construct on the distal side of the fracture following steps 1 through 6.

Note:
Insert the distal Half Pin which is closest to the fracture first.

Step 8: Two Rod to Rod Couplings are “clicked” on the clamp posts. Then, the Connecting Rod (carbon or stainless steel) is “clicked” into the two Rod to Rod Couplings. Reduce the fracture manually.

Step 9: While holding the fracture reduction in place, tighten the Rod to Rod Couplings using the 4mm Nut Wrench.

The frame is complete.
Operative Technique

Frame 2

Material used:
2 - Multi-Pin Clamps
2 - Rod to Rod Couplings
1 - Connecting Rod
 (Carbon or Stainless steel),
4 - 2mm Apex Half-Pins
 (Self-Drilling or Blunt),
1 - Drill/Pin Insertion Guide,
1 - 1.6mm K-Wire,
1 - 2mm Pin Driver,
1 - 4mm Nut Wrench.

Step 1: The proximal Half Pins (blunt or self-drilling/self-tapping) are manually inserted parallel to the joint using the 2mm Pin Driver and Drill/Pin Insertion Guide. Due to the design of the Clamp, the Half Pins can be placed parallel or convergent within the Clamp.

Use the Drill/Pin Insertion Guide and the 1.6mm K-wire to pre-drill if using blunt Half Pins. If self-drilling/self-tapping Half Pins are used, it is possible to insert the Half Pins without pre-drilling.

Note: The drill/insertion angle is 0° to 45° from the frontal plane radially. Use image intensification to determine proper pin placement, and ensure bi-cortical purchase.

Step 2: Tighten the Multi-Pin Clamp to the Half Pins at the desired position using the 4mm Nut Wrench.
Operative Technique

Frame 2

Step 3: Construct a Half Pin/Multi-Pin Clamp assembly distal to the fracture as shown in the figure. Make sure to tighten the Clamp onto the Half Pins.

Step 4: Two rod to rod couplings are "clicked" on each of the clamp posts. Then, the Connecting Rod (carbon or stainless steel) is "clicked" into the two Rod to Rod Couplings, and the fracture is reduced.

Step 5: Holding the fracture reduction in place, tighten the Rod to Rod Couplings using the 4mm Nut Wrench.

The frame is complete.
Note:
This frame offers additional freedom of independent pin placement which is dictated by the soft-tissue damage and the fracture. This also gives an option to more easily treat the wounds while the frame is in situ.

Material used:
1 - Multi-Pin Clamps
1 - Rod to Rod Couplings
2 - Pin to Rod Couplings
1 - Connecting Rod
 (Carbon or Stainless steel),
4 - 2mm Apex Half-Pins
 (Self-Drilling or Blunt),
1 - Drill/Pin Insertion Guide,
1 - 1.6mm K-Wire,
1 - 2mm Pin Driver,
1 - 4mm Nut Wrench.

Step 1: Manually insert the distal Half Pins (blunt or self-drilling/self tapping) into the fifth proximal phalanx using the 2mm Pin Driver and the Drill/Pin Insertion Guide. Place the Half Pins and Clamp parallel to the long axis of the bone. Use the Drill/Pin Insertion Guide and the 1.6mm K-wire to pre-drill if using blunt Half Pins. If self-drilling/self-tapping Half Pins are used, it is possible to insert them without pre-drilling.

Insert the Half Pins from the ulnar side in the frontal plane. Use image intensification to determine proper pin placement, and ensure bi-cortical purchase.

Step 2: Tighten the Multi-Pin Clamp to the Half Pins at the desired position using the 4mm Nut Wrench.
Step 3: Attach a Rod to Rod Coupling to the Clamp.

Step 4: Insert one Half Pin in the fifth metacarpal proximal to the fracture respecting the soft-tissue injuries. Attach a Pin to Rod Coupling to the Half Pin. Then, connect a 3mm Connecting Rod (Carbon or Stainless Steel) between the Rod to Rod Coupling and the Pin to Rod Coupling.

Step 5: Attach the second Pin to Rod Coupling to the proximal end of the Connecting Rod.
Step 6: Insert the Half Pin into the shaft of the metacarpal using the Drill/ Pin Insertion Guide and the Pin to Rod Coupling as guides. Then, manually reduce the fracture.

Step 7: While holding the fracture reduction in place, tighten the Rod to Rod Coupling and Pin to Rod Couplings using the 4mm Nut Wrench.

The frame is complete.
Ordering Information - Implants

Couplings and Clamps

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4960-1-010</td>
<td>Rod to Rod Coupling</td>
<td>3mm / 3mm</td>
</tr>
<tr>
<td>4960-1-020</td>
<td>Pin to Rod Coupling</td>
<td>1.65mm–2mm / 3mm</td>
</tr>
<tr>
<td>4960-1-060</td>
<td>Rod to Rod Coupling</td>
<td>5mm / 3mm</td>
</tr>
<tr>
<td>4960-2-020</td>
<td>Multi-Pin Clamp</td>
<td>—</td>
</tr>
<tr>
<td>4960-2-030</td>
<td>90° Multi-Pin Clamp</td>
<td>—</td>
</tr>
</tbody>
</table>

Connecting Rods

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
<th>Diameter</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5079-6-030</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>30mm</td>
</tr>
<tr>
<td>5079-6-040</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>40mm</td>
</tr>
<tr>
<td>5079-6-050</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>50mm</td>
</tr>
<tr>
<td>5079-6-060</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>60mm</td>
</tr>
<tr>
<td>5079-6-090</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>90mm</td>
</tr>
<tr>
<td>5079-6-120</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>120mm</td>
</tr>
<tr>
<td>5079-6-150</td>
<td>Carbon Connecting Rod</td>
<td>3mm</td>
<td>150mm</td>
</tr>
<tr>
<td>5079-5-030</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>30mm</td>
</tr>
<tr>
<td>5079-5-040</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>40mm</td>
</tr>
<tr>
<td>5079-5-050</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>50mm</td>
</tr>
<tr>
<td>5079-5-060</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>60mm</td>
</tr>
<tr>
<td>5079-5-090</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>90mm</td>
</tr>
<tr>
<td>5079-5-120</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>120mm</td>
</tr>
<tr>
<td>5079-5-150</td>
<td>Stainless Steel Connecting Rod</td>
<td>3mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

Warning: Bone Screws referenced in this material are not approved for screw attachment or fixation to the posterior elements (pedicles) of the cervical, thoracic or lumbar spine.
Ordering Information - Implants

2mm Self Drilling/Self Tapping Apex Half-Pins

<table>
<thead>
<tr>
<th>REF</th>
<th>Shaft Diameter</th>
<th>Total Length</th>
<th>Thread Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5080-2-012</td>
<td>2mm</td>
<td>45mm</td>
<td>12mm</td>
</tr>
<tr>
<td>5080-2-020</td>
<td>2mm</td>
<td>45mm</td>
<td>20mm</td>
</tr>
</tbody>
</table>

1.65mm Self Drilling/Self Tapping Apex Half-Pins

<table>
<thead>
<tr>
<th>REF</th>
<th>Thread/Shaft Diameter</th>
<th>Total Length</th>
<th>Thread Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5080-1-612</td>
<td>1.65/2mm</td>
<td>45mm</td>
<td>12mm</td>
</tr>
<tr>
<td>5080-1-620</td>
<td>1.65/2mm</td>
<td>45mm</td>
<td>20mm</td>
</tr>
</tbody>
</table>

2mm Blunt Apex Half-Pins

<table>
<thead>
<tr>
<th>REF</th>
<th>Shaft Diameter</th>
<th>Total Length</th>
<th>Thread Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>5065-3-615</td>
<td>2mm</td>
<td>36mm</td>
<td>15mm</td>
</tr>
<tr>
<td>5065-4-520</td>
<td>2mm</td>
<td>45mm</td>
<td>20mm</td>
</tr>
</tbody>
</table>

K-Wires

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
<th>Diameter</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>390142</td>
<td>K-Wire</td>
<td>1.0mm</td>
<td>150mm</td>
</tr>
<tr>
<td>390152</td>
<td>K-Wire</td>
<td>1.2mm</td>
<td>150mm</td>
</tr>
<tr>
<td>390162</td>
<td>K-Wire</td>
<td>1.4mm</td>
<td>150mm</td>
</tr>
<tr>
<td>390164</td>
<td>K-Wire</td>
<td>1.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>
Ordering Information - Instruments

<table>
<thead>
<tr>
<th>REF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4960-9-040</td>
<td>Drill / Pin Insertion Guide</td>
</tr>
<tr>
<td>4960-9-030</td>
<td>4mm Nut Wrench</td>
</tr>
<tr>
<td>4960-9-020</td>
<td>2mm/1.65mm Pin Driver</td>
</tr>
<tr>
<td>4940-9-030</td>
<td>5mm Wrench / 3mm–4mm Pin Driver</td>
</tr>
<tr>
<td>5084-4-044</td>
<td>4mm Spanner Wrench</td>
</tr>
<tr>
<td>4960-9-904</td>
<td>Storage Case Lid</td>
</tr>
<tr>
<td>4960-9-903</td>
<td>Storage Case Upper Insert</td>
</tr>
<tr>
<td>4960-9-902</td>
<td>Storage Case Lower Insert</td>
</tr>
<tr>
<td>4960-9-901</td>
<td>Storage Case Base</td>
</tr>
</tbody>
</table>
The information presented in this brochure is intended to demonstrate a Stryker product. Always refer to the package insert, product label and/or user instructions before using any Stryker product. Surgeons must always rely on their own clinical judgment when deciding which products and techniques to use with their patients. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

Stryker Corporation or its subsidiary owns the registered trademark: Stryker, Hoffmann
Stryker Corporation or its subsidiary owns, uses or has applied for the following trademarks: Compact, Apex